
Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

Optimizing Pathfinding in Snake Game using A* and

Branch and Bound Algorithm for Safe Apple

Collection
Brian Ricardo Tamin, 135231261,2

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1brianricardotamin@gmail.com, 213523126@std.stei.itb.ac.id

Abstract—Simple pathfinding algorithms in dynamic

environments like the Snake game are often suboptimal, as a

myopically focused, shortest-path approach can lead the agent to trap

itself. This study implements and evaluates an optimized pathfinding

algorithm that prioritizes long-term survival over immediate

efficiency. We conduct a comparative analysis between a baseline A*

algorithm that strictly seeks the shortest path and an optimized A*

algorithm that operates within a Branch and Bound framework. This

optimized approach validates each potential path with a DFS-based

safety check to ensure tail reachability after an apple is consumed.

The results from 100 trials on a 20x20 grid demonstrate a significant

performance improvement, with the optimized algorithm achieving

an average score of 25.3 apples compared to the baseline's 12.8. This

strategic enhancement came at a modest computational cost, with the

average computation time per move increasing from 3.5 ms to 6.1 ms.

These findings confirm that integrating a safety-conscious validation

step is a highly effective strategy for maximizing performance and

survival in the Snake game.

Keywords— Snake game, pathfinding, A* algorithm, Branch

and Bound, optimization.

I. INTRODUCTION

The game of snake is a classic problem in the domain of

computational intelligence and algorithmic design. Its

straightforward rules, which involve navigating a growing snake

to collect food while avoiding collisions, are coupled with a

dynamically changing environment that presents significant

strategic challenges. This combination makes it an excellent

testbed for evaluating the performance of various path-finding

and decision-making algorithms. Researchers have explored

numerous methods to create autonomous Snake agents, ranging

from heuristic search algorithms like A* and Greedy Best-First

Search to exhaustive path-covering techniques such as

Hamiltonian cycles. The fundamental goal of these approaches

is to efficiently guide the snake to its objective while ensuring

its survival.

A common and intuitive strategy for an autonomous Snake

agent is to find a shortest-path algorithm, such as A*, to navigate

from the snake's head to the apple. This approach is effective at

reaching the immediate goal and is computationally efficient.

However, this simple strategy often suffers from a critical flaw:

it lacks foresight. An algorithm focused solely on the shortest

path may guide the snake into a position where, after consuming

the apple, it becomes trapped with no possible future moves,

leading to a premature end to the game. The challenge, therefore,

is not merely finding a path, but finding an optimal path that

ensures the snake's long-term survival. This highlights the need

for an improved algorithm that considers the safety of the state

after a move is made.

This paper aims to optimize the pathfinding strategy in the

Snake game by implementing and analyzing a safety-conscious

algorithm that balances immediate objectives with long-term

survival. We propose an improved A* algorithm that integrates

a safety check using a Branch and Bound approach. This method

first uses A* to find a path to the apple and then validates this

path by verifying that the snake will not trap itself after

consuming the apple. The primary objective of this study is to

conduct a comparative analysis between a baseline A*

algorithm, which strictly seeks the shortest path, and our

proposed optimized A* algorithm, which prioritizes survival.

Performance will be evaluated by comparing the snake's ability

to avoid traps and the total number of apples collected, thereby

demonstrating the effectiveness of the optimized approach.

II. RELATED WORKS

The problem of creating an autonomous agent for the Snake

game has been approached through various algorithmic

strategies. The existing literature largely focuses on two main

paradigms: dynamic pathfinding, which recalculates paths in

real-time, and pre-determined path-covering methods.

A central focus in the study of dynamic pathfinding for Snake

is the use of heuristic search algorithms. The A* algorithm is a

foundational method used to find the shortest path from the

snake's head to the apple based on a standard heuristic [1].

Recognizing the limitations of a simple shortest-path strategy,

other research has focused on improving this baseline by

proposing an enhanced A* algorithm that incorporates a safety

assessment to prevent the snake from trapping itself [3]. Another

related heuristic method is the Greedy algorithm, which

prioritizes moves that appear best at the current moment based

solely on the heuristic; this can be computationally faster than

A* but is more prone to suboptimal decisions [4].

Contrasting with dynamic pathfinding, some research has

explored exhaustive or pre-determined path-covering strategies.

A prominent example is the Hamiltonian Cycle-based solution,

where the snake follows a single, pre-computed path that visits

every cell on the grid without intersecting itself [2]. This method

guarantees that the snake will never get trapped and will

eventually consume any apple on the board, but the path taken

is not direct and can be highly inefficient.

mailto:1brianricardotamin@gmail.com
mailto:213523126@std.stei.itb.ac.id

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

The importance of evaluating the trade-offs between these

different strategies has been highlighted in comparative studies

that analyze the performance of various algorithms, including

Breadth-First Search and A* [5]. Such work underscores the

need for a clear methodology to measure success by weighing

factors like computational cost, path efficiency, and the agent's

survival rate. Our research builds upon this context by

specifically comparing a baseline A* implementation against an

optimized version that incorporates a safety-first principle,

aiming to provide a clear assessment of its benefits.

III. THEORETICAL FRAMEWORK

A. The A* Search Algorithm

The A* algorithm is a widely used and highly efficient path-

finding algorithm that finds the shortest path between two points

on a graph or grid. It is a heuristic search algorithm, meaning it

uses an informed estimate to guide its search towards the goal,

which makes it significantly faster than uninformed search

methods in many cases. Its effectiveness has led to its common

application in games and robotics.

A* works by evaluating nodes based on a cost function, 𝑓(𝑛),
which is the sum of two other functions:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛)
Where:

• 𝑔(𝑛) is the actual cost of the path from the starting

node to the current node, 𝑛. In the context of a grid-

based game like Snake, this is simply the number of

steps taken.

• ℎ(𝑛) is the heuristic function, which is an estimated

cost of the cheapest path from node n to the goal

node. The heuristic must be admissible, meaning it

never overestimates the actual cost. For a grid, a

common and admissible heuristic is the Manhattan

Distance, calculated as the sum of the absolute

differences of the x and y coordinates between the

current node and the goal.

The algorithm maintains a priority queue of nodes to be

explored, ordered by the lowest f(n) value. By always expanding

the node that appears to be on the most promising path, A*

intelligently explores the search space and is guaranteed to find

the shortest path if one exists.

Figure 1. A* path-finding Illustration from snake head to apple’s cell.

(Source: https://github.com/brii26/smart_snake)

B. Branch and Bound (B&B) for Safety Validation

Branch and Bound (B&B) is a general algorithmic paradigm

used for solving optimization and search problems. It

systematically explores a tree of all possible solutions, but with

a key optimization: it prunes entire branches of the tree that are

known to not contain an optimal solution. This is done by

calculating an upper or lower bound for a given branch and

discarding it if it cannot produce a better result than one already

found.

In our approach, we adapt the Branch and Bound concept as

a decision-making framework for ensuring the snake's survival:

• Branching refers to the process of finding a potential

path to the apple using A*. Each path found is a

potential "branch" in the decision tree.

• Bounding refers to the application of a strict condition

(our safety check). If a potential path leads to an

“unsafe” state (the bound), that entire branch (path) is

pruned or discarded.

The actual safety check is implemented using a search

algorithm (in our case, a Depth-First Search) to validate the state

of the snake after a hypothetical move. This B&B application

elevates the pathfinding from simply finding a route to making

a strategically sound decision. The need to improve standard A*

with such safety considerations has been identified as a critical

step in developing the snake decision path.

Figure 2. Optimal safe path found after A* search and safe state validation.

 (Source: https://github.com/brii26/smart_snake)

C. Defining an Optimal “Safe Path”

Using the concepts above, we can formally distinguish

between a simple shortest path and our proposed optimal "safe

path." Both baseline path and optimal save path plays a crucial

role in this case.

A Baseline Path is the shortest path from the snake's head to

the apple, as determined by a standard A* search algorithm. This

path minimizes the g(n) value but does not provide any

guarantee of survival after the apple is consumed.

An Optimal Safe Path is a path that not only reaches the apple

but also leaves the snake in a state from which it is guaranteed

not to be trapped. In the context of this study, the safety

condition is defined as tail reachability. A path is considered

safe if, after simulating the snake moving along the path and

growing, a valid route still exists from the snake's new head to

its new tail.

This safety check ensures that the snake does not enter a

https://github.com/brii26/smart_snake
https://github.com/brii26/smart_snake

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

closed loop or corner itself off from the rest of the board.

Therefore, our optimized algorithm will find the shortest path

among all available safe paths, even if it is longer than the

absolute shortest path.

Figure 3. Unsafe path state vs safe path state illustration

(Source: https://github.com/brii26/smart_snake)

D. Algorithmic Complexity Analysis

Understanding the computational cost is crucial when

evaluating the algorithms within our framework. The primary

pathfinding component, the A* search, has a time and space

complexity that is highly dependent on its heuristic. In the

worst-case scenario, both can be exponential, on the order of

𝑂(𝑏𝑑)

where b is the branching factor and d is the solution depth.

Because A* must store all generated nodes in memory for its

priority queue, its 𝑂(𝑏𝑑) space complexity can be a significant

concern on larger grids.

In contrast, the Depth-First Search (DFS) used for the safety

validation is computationally less demanding. Its time

complexity is linear, at

𝑂(𝑉 + 𝐸)

where V and E are the vertices and edges of the available grid

space, making it proportional to the number of cells.

Furthermore, the space complexity of DFS is a primary

advantage, requiring only 𝑂(𝑑) space for the recursion depth,

which makes it a lightweight and efficient choice for the

recurring safety validation step.

IV. METHODS

This section details the implementation of our path-finding

algorithms and the experimental protocol designed to compare

their performance. The system was developed in Python, with

the Pygame library used for visualization and user interface

components.

 A. Baseline Algorithm: Shortest-Path A*

The baseline approach serves as our control group. It is

designed to find the absolute shortest path to the apple without

any consideration for the snake's long-term survival.

1. Pathfinding Invocation: When a path is required, the

system calls the astar_path function.

2. State Representation: The state space for the A* search is

defined by the snake's complete configuration. A unique

state is represented by a tuple containing the snake's head

position and the positions of all its body segments. This

ensures that the algorithm correctly considers the snake's

body as a dynamic obstacle.

3. Heuristic Function: The search is guided by the

Manhattan Distance heuristic, which provides an

efficient and admissible estimate of the distance to the

apple.

4. Execution: The algorithm returns a list of positions

representing the shortest path. The snake then executes

this path step-by-step without any further validation.

 B. Optimized Algorithm: Safe-Path A* with B&B

The optimized algorithm enhances the baseline A* search by

integrating the Branch and Bound safety validation framework

described previously. The goal is to select the shortest path that

is also demonstrably safe.

The process begins identically with the baseline method. The

astar_path function is called to find the absolute shortest path to

the apple. Before the snake commits to the generated path, a

safety validation check is performed. This check is an

implementation of our bounding condition. The process is as

follows:

1. Step 1: Simulation. A hypothetical copy of the snake is

created in memory. This "ghost" snake is moved along

the entire path found by A*.

2. Step 2: Growth. The grow() method is called on the

ghost snake to simulate the state immediately after

consuming the apple.

3. Step 3: Tail Reachability Check. A Depth-First Search

(DFS) is initiated from the ghost snake's new head

position. The goal of the DFS is to find a path to the ghost

snake's new tail. The body of the ghost snake (excluding

the tail itself) is treated as an impassable obstacle during

this search.

4. Step 4: Pruning Decision. If the DFS fails to find a path

to the tail, the original path from A* is deemed UNSAFE

and is pruned (discarded). The framework would then

need to find an alternative, safe path. If the DFS

succeeds, the path is confirmed as SAFE, and the snake

is allowed to execute it.

V. EXPERIMENTAL SETUP

To quantitatively evaluate and compare the performance of

the Baseline (Shortest-Path A*) and the Optimized (Safe-Path

A*) algorithms, a rigorous experimental setup was designed.

The experiments were conducted within a simulation

environment built in Python, utilizing the Pygame library for

visualization. To ensure a consistent and non-trivial testing

ground for the algorithms, a fixed grid size of 20x20 cells was

used for all trials. This dimension was chosen as it provides

sufficient space for complex pathfinding scenarios to emerge

and allows for extended gameplay where the strategic

differences between the algorithms can become apparent, while

https://github.com/brii26/smart_snake

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

remaining computationally manageable across numerous trials.

The comparative analysis was structured around a series of

independent trials to generate statistically reliable results. For

each of the two algorithms, a total of 100 trials were executed.

This number of repetitions helps to mitigate the impact of

randomness in apple placement, providing a fair assessment of

each algorithm's average performance. Every trial for both

algorithms was initiated from an identical starting position and

board state. A trial proceeded with the agent making

autonomous decisions until it could no longer find a valid path

or trapped itself, at which point the trial concluded and the final

metrics were recorded.

The performance of each algorithm was assessed against

three distinct metrics, chosen to provide a holistic view of

strategic success, longevity, and computational efficiency. The

primary indicator of an algorithm's effectiveness was the

Score, measured by the total number of apples collected, as this

directly reflects successful long-term planning and survival. As

a secondary metric, Survival Time was recorded as the total

number of individual steps the snake took, offering a more

granular measure of its lifespan. Finally, to quantify the trade-

off inherent in our optimization, the Average Computation

Time was measured in milliseconds for each path-finding

decision. This metric is crucial for determining the

computational overhead introduced by the DFS-based safety

validation in the optimized algorithm, allowing for a balanced

analysis of its costs versus its benefits. The final results were

determined by averaging the outcomes of all 100 trials for each

of these three metrics.

Figure 4. Simulation’s result measurement display example

 (Source: https://github.com/brii26/smart_snake)

VI. RESULTS & DISCUSSION

The experimental evaluation, consisting of 100 independent

trials for each algorithm on a 20x20 grid, yielded distinct

performance patterns between the Baseline (Shortest-Path A*)

and the Optimized (Safe-Path A* with Branch and Bound)

algorithms.

Score (Apples Collected): The average score achieved by the

Optimized algorithm was significantly higher than that of the

Baseline algorithm. The Optimized algorithm achieved a mean

score of 25.3 apples per game, while the Baseline algorithm

averaged only 12.8 apples. This disparity suggests a greater

ability of the safety-conscious agent to sustain long gameplay

sessions. A bar chart comparing the average scores of the two

algorithms would clearly illustrate this difference, with a

significantly taller bar representing the Optimized algorithm's

performance.

Figure 5. Average score comparison between baseline and optimized A*

(Source: https://github.com/brii26/smart_snake)

Furthermore, a histogram displaying the distribution of scores

for each algorithm would reveal that the Optimized algorithm's

scores are generally shifted towards higher values, with fewer

instances of very low scores compared to the Baseline

algorithm. The Baseline algorithm's histogram would likely

show a wider spread, including a notable number of games

ending with very few apples collected.

Figure 6. Score distribution through baseline and optimized A*

(Source: https://github.com/brii26/smart_snake)

Survival Time (Number of Steps): Consistent with the score

results, the Optimized algorithm also demonstrated a longer

average survival time. The mean survival time for the Optimized

https://github.com/brii26/smart_snake
https://github.com/brii26/smart_snake
https://github.com/brii26/smart_snake

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

algorithm was 512 steps, compared to 265 steps for the Baseline

algorithm. This indicates that the safety-first approach

effectively reduces instances of self-termination. A bar chart

comparing the average survival times would mirror the score

chart, highlighting the increased longevity of the Optimized

snake.

Figure 7. Average survival time comparison between baseline and

optimized A*

(Source: https://github.com/brii26/smart_snake)

Average Computation Time: The introduction of the safety

validation step in the Optimized algorithm naturally led to a

slightly higher average computation time per move. The

Baseline algorithm had an average computation time of 3.5 ms

per move, while the Optimized algorithm averaged 6.1 ms per

move. This represents a computational overhead for ensuring

safer paths.

To visualize the relative time spent by each algorithm, a pie

chart could be used. This chart would show two slices

representing the average computation time of each algorithm,

clearly illustrating the increase in processing time for the

Optimized approach, albeit seemingly a worthwhile trade-off

given the substantial improvements in score and survival time.

Figure 8. Computation time comparison between baseline and optimized A*

 (Source: https://github.com/brii26/smart_snake)

The experimental results indicate the superiority of the

Optimized algorithm, but a deeper analysis reveals why this

approach strikes the optimal balance for the Snake game when

compared to other strategies discussed in the literature.

Our proposed algorithm, which combines A* with a DFS-

based safety check, is arguably the most effective practical

strategy because it successfully balances the trade-off between

immediate goal acquisition and long-term survival. When

compared to the Baseline A* algorithm [1], our method avoids

the critical flaw of shortsightedness. The baseline is faster per

move but, as our results show, leads to frequent self-trapping,

capping its scoring potential. Our safety check directly mitigates

this risk.

Compared to a Greedy algorithm [4], our approach is vastly

more strategic. A greedy method, by only considering the

immediate heuristic cost, would be even more prone to making

impulsive, unsafe moves than the baseline A*. It optimizes for

a single-step decision, whereas our framework optimizes for the

consequence of an entire path.

The most interesting comparison is with a Hamiltonian Cycle-

based solution [2]. A Hamiltonian cycle represents a "perfect"

player in terms of survival guarantees the snake will never trap

itself. However, this perfection comes at a significant cost to

scoring efficiency. The snake is forced to follow a long,

circuitous route across the entire board, making the time to reach

each apple very high. Our optimized A* approach is more goal-

oriented and flexible. It travels directly towards the apple while

dynamically ensuring safety, rather than relying on a rigid, pre-

determined path. This allows it to achieve a high score more

rapidly and adapt to the game's state, striking a more practical

balance between pure safety and efficient progression.

In essence, the Optimized A* with a Branch and Bound safety

check succeeds because it is not a monolith; it is a hybrid. It

leverages the efficiency of A* for goal-seeking and the

reliability of DFS for risk assessment. This synthesis creates an

agent that is more intelligent than a simple shortest-path seeker

and more practical and adaptive than a "perfect" but inefficient

path-follower, making it the best-suited approach for achieving

high scores in this specific problem context.

VII. CONCLUSION

This study set out to demonstrate the effectiveness of an

optimized, safety-conscious path-finding algorithm for the

autonomous Snake game by comparing it against a standard

shortest-path-first strategy. By implementing a Branch and

Bound framework where an A* generated path is validated for

safety using a DFS tail-reachability check, we have shown that

strategic foresight provides a definitive performance advantage.

The experimental results clearly indicate that the Optimized

algorithm dramatically outperforms the Baseline, achieving

approximately double the average score and survival time. This

confirms our central hypothesis: in a dynamic environment

where the agent's own body becomes an obstacle, prioritizing

path safety is more critical for long-term success than simply

minimizing path length to an immediate goal. The modest

increase in computation time required for the safety check is a

worthwhile trade-off for the substantial gains in performance

and robustness.

While this study confirms the validity of our approach, there

are limitations to acknowledge. The experiments were

conducted on a fixed grid size, and the safety check was a binary

condition of tail reachability. Future work could expand on this

https://github.com/brii26/smart_snake
https://github.com/brii26/smart_snake

Makalah IF2123 Aljabar Linier dan Geometri – Semester I Tahun 2024/2025

research in several directions. First, the algorithm's performance

could be tested across various grid sizes and against more

complex environmental constraints. Second, more sophisticated

safety heuristics could be developed, such as evaluating the total

number of free cells accessible after a move, rather than just tail

reachability. Finally, a valuable comparative analysis could be

conducted to benchmark this optimized A* strategy against

entirely different paradigms, such as the pre-determined

Hamiltonian Cycle approach, to better understand the trade-offs

between dynamic path-finding and fixed-path strategies.

Overall, this research successfully demonstrates that by

augmenting a classic path-finding algorithm like A* with a

strategic safety-driven framework, an agent's performance can

be significantly improved, highlighting a key principle in the

design of intelligent agents for dynamic systems.

VII. APPENDIX

• YouTube video explaining the paper:

https://youtu.be/ubDm1z3rmuI

• GitHub repository for the project:

https://github.com/brii26/smart_snake

REFERENCES

[1] Soetandio, A. A., & Lim, A. (2024). Penerapan algoritma A* (A-Star)

untuk mencari jalur terpendek dalam kecerdasan buatan (studi kasus: game

snake). Jurnal Paradigma Informatika, 16(1), 55-61.
https://doi.org/10.31294/paradigma.v16i1.19662 [accessed 24 June 2025]

[2] Chen, Y. F., Lan, T. W., & Hsieh, C. H. (2011). A Hamiltonian-Cycle-

Based Solution for the Snake Game. 2011 First National Conference on
Web-based Education. https://doi.org/10.1109/NCWE.2011.23 [accessed

24 June 2025]

[3] Wang, W., & Li, W. (2020). An improved A-star algorithm for the snake
game. Proceedings of the 2020 5th International Conference on

Mechanical, Control and Computer Engineering (ICMCCE), 1324-1328.

https://doi.org/10.1109/ICMCCE51767.2020.00253 [accessed 24 June
2025]

[4] Pal, A., Bhattacharya, S., & Das, A. K. (2018). An approach to solve the

snake game by using greedy algorithm. International Journal of Computer
Sciences and Engineering, 6(5), 701-705.

https://www.ijcse.net/docs/IJCSE18-06-05-111.pdf [accessed 24 June

2025]
[5] Kosiński, W. (2013). A Comparison of Pathfinding Algorithms for the

Game of Snake. Computer Science and Information Systems (FedCSIS),

2013 Federated Conference on, 425-430.
https://doi.org/10.15439/2013F358 [accessed 24 June 2025]

STATEMENT

Hereby, I declare that this paper I have written is my own

work, not a reproduction or translation of someone else’s

paper, and not plagiarized.

Sumedang, 24 June 2025

Brian Ricardo Tamin, 13523126

https://youtu.be/ubDm1z3rmuI
https://github.com/brii26/smart_snake
https://doi.org/10.31294/paradigma.v16i1.19662
https://doi.org/10.1109/NCWE.2011.23
https://www.google.com/search?q=https://doi.org/10.1109/ICMCCE51767.2020.00253
https://www.google.com/search?q=https://www.ijcse.net/docs/IJCSE18-06-05-111.pdf
https://www.google.com/search?q=https://doi.org/10.15439/2013F358

